へムたんぱく-ガス状リガンド結合の反応速度論 I.ミオグロビンおよびヘモグロビン単離鎖のO。結合反応

奈良県立医科大学第2生理学教室

松村一仁

KINETICS OF THE REACTIONS OF HEME PROTEINS WITH GASEOUS LIGANDS — STUDIES WITH STOPPED-FLOW SPECTROPHOTOMETRY I. THE REACTION OF MYOGLOBIN AND THE ISOLATED HEMOGLOBIN CHAINS WITH OXYGEN

KAZUHITO MATSUMURA Second Department of Physiology, Nara Medical University Received July 27, 1992

Summary: A simple procedure for the determination of the dead time of the stopped -flow spectrophotometer was developed using the reducing reaction of 2, 6-dichlorophenolindophenol (DCIP) by L-ascorbic acid. The use of this simple irreversible reaction system made it possible to measure the dead time by a simple graphical analysis. Two other methods reported previously were also employed for the measurement. The values determined by the present method were in good agreement with those by the previous methods. Since the isolated hemoglobin chains as well as myoglobin exhibit no cooperativity in the O₂ equilibria, their reactions with O₂ are expected to be described by a single -step reaction mode. The kinetics of the reaction with O₂ of freshly prepared myoglobin from chicken gizzard and isolated chains from human adult hemoglobin (α^A and β^A) were studied with the stopped-flow method. The rate constants of O₂ association and dissociation were determined and the O₂ affinity, expressed as the O₂ pressure at half-saturation (P₅₀), was calculated therefrom. The values of P₅₀ calculated from the rate constants agree well with those obtained directly from the O₂ equilibrium measurements. I conclude that the reaction with O₂ of myoglobin and isolated hemoglobin chains is a single-step reaction.

Index Terms

dead time, stopped-flow spectrophotometer, myoglobin, isolated hemoglobin chains, kinetics

まえおき

ヘモグロビン(Hb)やミオグロビン(Mb)は O_2 やCO のようなガス状リガンドと可逆的に結合することができ る. このようなリガンド結合反応に関する研究は、ただ に血液による O_2 運搬や筋における O_2 の効率的利用とい った生理機能の解明に重要なだけでなく、ひろく機能た んぱくの働きを理解する上でも重要である. ところで, リガンド結合反応に対するアプローチとしては平衡論的 立場からのものが大半で,速度論的視点からのアプロー チは比較的少ないのが現状である.

Hb, Mbのリガンド結合反応は非常に速い反応なので、このような高速反応の速度論的研究には、ストップトフロー(stopped-flow)法¹,温度ジャンプ(T-jump)

ストップトフロー装置の t_a 測定法については、これまで にいくつかの報告がある⁴⁻¹⁰. 最近、Brissette β^{10} は、 Mg^{2+} と 8-hydroxyquinoline のキレート生成反応を用 いた t_a の測定法を報告しているが、この反応は可逆反応 であるため、測定結果の解析がやや複雑となる点で難が ある.そこで、今回、テスト反応として、単純な不可逆 反応である L-アスコルビン酸による 2、6-dichlorophenolindophenol (DCIP)の還元反応を用いることによ り、Brissette らの方法¹⁰の簡便化を図った.

Mb は単量体のヘムたんぱくで、1分子の O_2 ~CO と 可逆的に結合する. O_2 平衡曲線は直角双曲線(rectangular hyperbola)となり、Hb の場合にみられる協同性 (cooperativity)はない. Mb と O_2 の結合平衡は単純な 一段階の反応式で表わされ、平衡定数は、結合速度定数 と解離速度定数の比として与えられる. Hb、Mb の O_2 親 和性は通常、50%飽和時の O_2 分圧(P_{50})で表わすが、協 同性がない Mb の場合、これは解離平衡定数に相当す る.そこで、速度論実験で速度定数が得られれば、これ から P_{50} が求められ、平衡実験で直接得られる P_{50} と一 致することが期待される. 単量体ではないが、単離した Hb 構成鎖もガス状リガンドとの結合反応に関しては同 様な挙動を示すことが報告されている¹¹⁾.

Mb および Hb 単離鎖のリガンド結合に関する速度論 的研究はこれまでにも報告されているが¹²⁻¹⁶,速度定数 から計算した平衡定数と,平衡実験で直接求めた平衡定 数の間には大きな食い違いがみられる.この食い違いの 原因としては,実際の反応機構が当初予想された反応式 よりも複雑なもので,二分子の結合過程に続いて,おそ らくは分子内コンフォメーション変化が生ずるためでは ないか,との考えが提出されている^{12,14}.しかし,これら の実験では主として,市販の Mb 標品(一般にかなり不 純物と変性 Mb を含む)がそのまま測定に供されている 点からみて, Mb 標品の質に原因の一半を求めることも 可能である.

そこで今回, ニワトリ砂嚢平滑筋から抽出, 純化した 新鮮な Mb および Hb A($\alpha_2\beta_2$)から単離した新鮮な α^A および β^A 鎮について, ストップトフロー法により O₂結 合反応の速度論的測定を行い, 速度定数から P₅₀を求め たところ, 平衡実験で直接求めた P₅₀とよく一致するこ とが確認された.

試料および実験方法

(1) ストップトフロー分光光度計の taの測定

1) ストップトフロー装置の t_a

Fig.1 は、ストップトフロー法の原理と不感時間の概 念を模式的に示したものである. 別々のリザーバー(溶液 だめ)に入れた2種類の試料溶液 A, Bを高圧の N₂ガス (駆動圧: 5~8 kg/cm²)により急速にミキシング・チ ェンバー内で混合し、反応を開始させる(M 点). 流れを 急速停止させた後、観測セル内(O 点)で進行する反応を 吸光度(その他の物理量)の経時変化として検出、記録す

Fig. 1. Schematic representation of the stopped-flow apparatus and its dead time (t_d) . Two solutions of reactants (A and B) are rapidly mixed in the mixing chamber (M) and the reaction is followed in the observation cell (O). A_{obs} and A_{tot} denote the actually observed and total potential absorbance changes, respectively. See text for details.

仁

る. ここで問題となるのが t_d である. 試料溶液 A, B が M 点で混合されると同時に反応は始まるが, 混合液が観 測セル(O 点)に達するまでの間に既に反応は進行してお り, この間に進行した反応は観測することができない. 混合液が混合点(M 点)から観測セル(O 点)に達するの に要する時間を不感時間と呼び, t_d と表わす. 実際に観測 されるのは t_d 以後の反応(A_{obs})である. いま, 速度定数 k_{app} の一次反応を不感時間 t_d の装置で観測する場合を考 える. 実際に観測される吸光度変化を A_{obs} , 反応により 生ずべき全吸光度変化を A_{tot} とすると, 一次反応に関す る速度式から次の関係が成り立つ.

 $k_{app} \cdot t_d = 2.303 \log(A_{tot} / A_{obs})$ (1) これから明らかなように、 t_d が小さいほど、全反応量のう ち実際に観測される反応量の割合 A_{obs} / A_{tot} が大きく、 したがって、不感時間をできる限り短縮することが装置 の性能の向上につながることになる.

2) t_dの測定

L-アスコルビン酸による2, 6-dichlorophenolindophenol(DICP)の還元反応を用いて、ストップトフロー 分光光度計 RA-401(ユニオン技研)の t_dを測定した.0.1 mMのDCIP 溶液を種々の濃度(2.5-20 mM)のL-アス コルビン酸溶液と急速に混合し、DCIP が還元されてそ の濃青色が消失する過程を,524 nm における吸光度で追 跡した.吸光度の経時変化は接続したコンピュータ (SORD SYSTEM-77)に入力,記憶させると同時にブラ ウン管オシロスコープ(ユニオン技研 RA-453)に映し出 した後, 随時 X-Y レコーダ(ユニオン技研 RA-452)に描 記させた. L-アスコルビン酸の濃度は DCIP の 20 倍モ ル過量以上とし、反応は擬一次反応として取り扱った. 装置に接続したコンピュータにより、反応曲線から擬一 次速度定数を求めた.測定にあたっては光路長10mm および2 mmの観測セルを用い, 駆動圧は接続した N2 ボンベ(住友精化:zero-A)により5~8 kg/cm²とし た. 恒温槽から恒温水を循環させ、観測セル部の温度を 25℃に保った. DCIP はまず少量のブタノールに溶解し た後,脱イオン水を加えて0.1 mM 溶液とした.またL -アスコルビン酸に濃塩酸を加えて DCIP 溶液と混合後 の pH が 2.0 になるよう pH を調整した. 試料溶液は必 ず実験の直前に新しく調製した.

(2) Mb および Hb A 構成鎖の調製

Mb は新鮮なニワトリ筋胃平滑筋から,熱変性-ゲル濾 過(Sephadex G-75)-クロマトフォーカス法¹⁷⁾により単 離,純化し,主成分(Mb I)を用いた. Hb A の構成鎖(α^{A} と β^{A})の単離は,酸性下p-chloromercuribenzoate (PCMB)を用いる Bucci-Fronticelli法¹⁸⁾により,また β -メルカプトエタノールおよびゲル濾過クロマト法 (Sephadex G-10)により単離鎖から PCMB を除去し た¹⁹⁾. 試料 Mb, α^{A} , β^{A} の純度はゲル電気泳動により, Hb A 構成鎖からの PCMB 除去は Boyer 法²⁰⁾による SH 滴定によりそれぞれ確認した. 単離は CO 飽和条件 下, 氷室中(4 °C)で行った.

(3) Mb および Hb 単離鎖の O₂結合~解離速度の測
 定

速度論実験は前述のストップトフロー分光光度計 RA -401 を使用して行った. ニワトリ砂嚢 Mb I の O_2 解離反 応測定には光路長 10 mm の観測セルを用い,他のスト ップトフロー実験では光路長 2 mm の観測セルを用い た.駆動圧は 7 kg/cm²とした.t_aは光路長 2 mm, 10 mm のとき,それぞれ 0.9 msec, 1.9 msec であった.測 定に先立ち,CO型で水冷保存された試料溶液は,水室内 で蛍光燈照射下に O_2 通気し,オキシ型に変換した.

 O_2 結合反応は、Mb, α^A 鎖, β^A 鎖のデオキシ型の溶液 を O_2 溶液(80~140 μ M)と急速に混合し、波長 430 nm において観測した.各試料のデオキシ型溶液は次のよう にして作製した. N_2 (住友精化:zero-A)で飽和した 0.1 M 燐酸緩衝液と平衡させた Sephadex G-25 カラム (0.9 x 25 cm)にヘムあたり約10倍モル過量のdithionite 溶液を0.5 ml 添加し、沈入後に試料のオキシ型溶 液を添加、 N_2 で飽和した緩衝液で溶出した.溶出した試 料溶液は、特製の脱気ーガス平衡装置によりさらに数回 の脱気と N_2 ガスの通気一平衡を反復し、デオキシ化の完 結したことを分光学的に確認した後、空気と接触するこ となく測定セル内へ注入した. O_2 溶液の作製にあたって は、空気と平衡した緩衝液を N_2 平衡緩衝液で適宜希釈し た.溶存 O_2 量は、水溶液に対する O_2 の溶解度係数²¹⁾か ら算出した.

O₂ 解離反応は、オキシ型の試料溶液を12 mM dithionite 溶液と急速混合し、波長 415 nm で観測した.

試料溶液の濃度はニワトリ砂囊 Mb で約 10 μ M(混合 後), α^{A} 鎖および β^{A} 鎖で 2 ~ 3 μ M(混合後)とした. 実 験は 0.1 M リン酸緩衝液(pH 7.0), 20℃の条件で行っ た.

結 果

 ストップトフロー分光光度計の不感時間の測定 L-アスコルビン酸(A)と DCIP (D)の反応は次のように 表わされる.

$$A+D \xrightarrow{K} A'+D'$$

ただし、k は二次速度定数, A', D'は反応生成物を示す.

(2)

DCIP に比べ、L-アスコルビン酸が大過剰に存在すると き([A]》[D])、反応は擬一次反応として取り扱うことが でき、見かけの一次速度定数 k_{app} はL-アスコルビン酸の 濃度 [A] に比例する.

k_{app}=k[A]
 (3)
 k_{app}を [A] に対してプロットすると Fig.2 a に示すよう
 に直線が得られ、その勾配として二次速度定数 k が求め
 られる. (3)式を用いて(1)式を書き直すと

 $logA_{obs} = -(kt_d/2.303)[A] + logA_{tot}$ (4) を得る.L-アスコルビン酸とDCIPの反応は(2)式に示す ように不可逆反応なので、 A_{tot} はDCIPの濃度によって のみ決まる.つまり、DCIPの濃度を一定に保つ限り、 [A]を変えても A_{tot} は一定である.したがって、(4)式よ り、 $logA_{obs}$ を[A] に対してブロットすれば直線が得ら

Fig. 2. Reducing reaction of 0.1 mM 2, 6-dichlorophenolindophenol (DCIP) by ascorbic acid (A). Plots of k_{app} (a) and log A_{obs} (b) against [A]. Experiments were carried out at pH 2. 0 and 25°C. Driving pressure : 7 kg/cm², Optical path length : 10 mm.

れ、その勾配-(kt_d/2.303)とFig.2aから得られた k の値から t_dを求めることができる.Fig.2bに logA_{obs}と [A]の関係を示す.光路長 10 mmの観測セルを使用 し、駆動圧 7 kg/cm²のときの t_dは 1.8 msec と算出さ れた.さらに、駆動圧および観測セルの光路長を変えて t_dを測定した.その結果を Table 1 に示す.駆動圧が大き く、観測セルの光路長が短いほど、不感時間は短くなる. 光路長 2 mmの観測セルを使用し、駆動圧 7 kg/cm₂の とき t_d to .9 ms まで短縮することができた:

上述の logA_{obs}vs. [A] ブロットに加え,従来から報告 されている以下の 2 つの方法による t_d測定を試みた. 1) 反応曲線から得た k_{app}, A_{obs}と別途静的な測定から得た A_{tot}を用いて,(1)式より t_d=(2.303/k_{app})log(A_{tot}/ A_{obs})として t_dを計算した^{4,6)}. 2) [A] を変えたときの反 応曲線の一次反応プロットを t=0 以前に外挿すると一 点で交差し,これは反応開始時刻に相当する.この交点

Fig. 3. First-order plots of reduction of DCIP at various concentrations of ascorbic acid. The concentrations employed were : (a) 2.5 mM, (b) 5 mM, and (c) 10 mM. $(A_t - A_{\infty})$ represent the difference between the absorbance at time t and the final one. All experiments were carried out at pH 2.0 and 25°C. Driving pressure : 5 kg/cm², Optical path length : 10 mm. See text for explanations.

仁

と観測開始点(t=0)の時間間隔がt_dに当たる^{5,8)}(Fig. 3).

本論文で述べた $\log A_{obs}$ vs. $[A] プロット法および上述 の2 つの方法で測定した <math>t_d$ の値を Table 1 に一括, 比較 した. 三者の間にはよい一致がみられた.

(2) Mb および Hb 構成鎖 O₂ 結合の速度論

今回の実験で用いた=ワトリ砂嚢平滑筋から分離した Mb I は, ゲル電気泳動上均質で不純物は全くみられない (Fig. 4). また, Hb A から Bucci-Fronticelli 法¹⁸⁾で分 離, 脱 Hg¹⁹⁾した α^{A} 鎖での SH タイターは, それ ぞれ 1.15 SH/chain, 1.89 SH/chain となり, ほぼ完

Table 1. Values of the dead time at various pneumatic pressures determined by different methods

Pneumatic	Dead time (ms)			
(kg/cm ²)	a	b	с	
5	$2.3 {\pm} 0.1$	2.3	$2.3 {\pm} 0.2$	
6	$1.9 {\pm} 0.1$	2.3	2.0 ± 0.2	
7	$1.8 {\pm} 0.1$	1.7	$1.9 {\pm} 0.2$	
	$0.9 {\pm} 0.1^{*}$			
8	$1.7 {\pm} 0.1$	1.8	$1.8 {\pm} 0.1$	

a; a plot of log A_{obs} vs. [A]

b; extrapolation of first-order plots

c; (2.303/k_{app}) log (A_{tot}/A_{obs})

* Optical path length : 2 mm. The other measurements with the path length of 10 mm.

Fig. 4. Starch gel electrophoresis of chicken myoglobin. Main myoglobin component (Mb I) from the skeletal muscle (b) and gizzard (c). The raw myoglobin preparations from the skeletal muscle (a) and gizzard (d) are also shown. Tris-EDTA-Borate buffer system (pH 8.6) and Amido Black 10B stain were used. 全に脱 Hg されていることが確認された.

Fig.5に、今回ストップトフロー法により観測したニ ワトリ筋胃 Mb I における O₂ 一結合ならびに一解離反 応経過の実例を示す.

Mb および Hb 構成鎖と O₂ の反応は次のように表わ される.

$$Fe+O_2 \xrightarrow{k'}_k FeO_2 \qquad K=k' \swarrow k$$
 (5)

ここで, k', k はそれぞれ結合および解離速度定数, K は 結合平衡定数, Fe は各ヘム蛋白である. デオキシ型の試 料溶液と O₂ 溶液を混合したときの反応の速度式は,

 $-d[Fe]/dt=k'[Fe][O_2]-k[FeO_2]$ (6) となり、Fe に比べて O_2 が大過剰の場合、擬一次反応と して扱うことができる.また、k に比べて k'は十分大き く、 $[O_2]$ も十分大きいので、k $[FeO_2]$ の項は事実上無 視でき、(6)式は

-dln[Fe]/dt=k_{app}=k'[O₂] (7) と書ける. 一次反応プロットの勾配から見かけの一次速 度定数 k_{app}が得られ,これと [O₂] から k'を求めること ができる. Fig. 6 a は, ニワトリ砂囊 Mb I と O₂(70 μM)

Fig. 5. Reaction traces of O_2 association (upper) to and O_2 dissociation (lower) from chicken gizzard myglobin I (main component). O_2 association : [Mb] 13μ M, [O_2] 70μ M, observed at 430 nm. O_2 dissociation : [MbO₂] 11μ M, [Na₂S₂O₄] 6 mM, observed at 415 nm. Both experiments were made in 0.1 M phosphate (pH 7.0), at 20°C.

(336)

との結合反応の一次反応プロットである.反応の初期部 分はt_dのため観測できなかったが,速度定数を求めるの に十分な吸光度変化は検出でき(Fig.5),(7)式の擬一次 反応速度式に従ったほぼ直線の一次反応プロットが得ら

Fig. 6. First-order plots of O_2 association (a) to and O_2 dissociation (b) from chicken gizzard myoglobin I. Experimental conditions are the same as in Fig. 5.

れた. この勾配から k_{app}を求め, [O₂]=70 μM から, O₂ 結合速度定数 k'=18 x 10⁶M⁻¹s⁻¹ が得られた.

オキシ型試料溶液を dithionite 溶液と混合すると,遊離の溶存 O_2 は dithionite によって速やかに除去されるので,解離方向のみの不可逆反応

$$\operatorname{FeO}_2 \xrightarrow{K} \operatorname{Fe} + (O_2)$$
 (8)

となり、一次反応の速度式 -dln[FeO₂]/dt=k

(9)

で表わされる.したがって、一次反応プロットをとれば、 その勾配からkが求められる. ニワトリ砂嚢 Mb I につ いて、MbO₂ (22 μ M)を dithionite(12 mM)と混合した ときのO₂解離反応の一次反応プロットを Fig. 6 b に示 す.(9)式に従った直線の一次反応プロットが得られ、こ の勾配からO₂ 解離速度定数は k=18 s⁻¹と算出された.

以上のようにして得られたニワトリ砂囊平滑筋 Mb I および α^{A} , β^{A} 鎖の速度定数 k', k の値を Table 2 に一 括した.

Mb は単量体で,協同作用(ヘム間相互作用)がないの で、 O_2 親和性を表わす P_{50} (O_2 平衡曲線における 50 % 飽和時の O_2 分圧)は解離平衡定数に相当し,解離平衡定 数と結合平衡定数 K は互いに逆数の関係にある.したが って、速度定数の比 k/k'として P_{50} を算出することが できる.

 $P_{50}=1/K=k/k'(M)$ (0) $P_{50}, k/k'$ はともに濃度の次元をもつ. ふつう P_{50} は O_2 分 E(mmHg)で表わされるので, P_{50} の算出にさいしては, 20℃における O_2 の溶解度係数 0.03102 ml/ml/760 mmHg²¹⁾を用い1 mmHg=1.82 μ M として換算した. = ワトリ砂嚢 Mb I について,速度定数から計算した P_{50} の値と,同条件下 O_2 平衡実験で直接求めた P_{50} の値¹⁷は それぞれ平均 0.54 mmHg と 0.50 mmHg と良好な一致 を示した(Table 2).また,速度定数から求めた $P_{50}=$ 0.54 mmHg を用い計算によって得た O_2 平衡曲線を,実

Table 2.	The kinetic constants and P_5	$_{\rm 0}$ calculated therefrom as compared with ${\rm P}_{\rm 50}$ deter-
	mined by oxygen equilibria.	Chicken myoglobin and isolated subunits of Hb A

	o) 011/8011 04011-01-0		,	
		Kinetic		Equilibria
	k' (x10 ⁻⁶ •M ⁻¹ •s ⁻¹)	k (s ⁻¹)	P₅₀ (mmHg)	P₅₀ (mmHg)
Chicken Gizzard Myoglobin I*	18±1.3(6)	18 ±0.4(6)	0.54±0.04(10)	0.50±0.01 (9) ¹⁷⁾
$\alpha^{\scriptscriptstyle A}$ $\beta^{\scriptscriptstyle A}$	38 ± 5 (6) 42 ± 4 (6)	19.3±1.5(6) 12.3±0.4(6)	$0.28 \pm 0.04(10)$ $0.16 \pm 0.01(10)$	$\begin{array}{c} 0.33 {\pm} 0.01 \hspace{0.1 cm} (7)^{\scriptscriptstyle 22)} \\ 0.16 {\pm} 0.01 (11)^{\scriptscriptstyle 22)} \end{array}$

* ; the main component. 0.1 M potassium phosphate (pH 7.0), 20°C. Figures in parentheses are no. of determinations.

Fig. 7. O₂ equilibrium curve for chicken gizzard myoglobin (Mb I) calculated from kinetically determined P₅₀ as compared with the equilibrium data actually obtained. The curve was drawn using the P₅₀ value of 0.54 mmHg. Equilibrium experiments: 0.1 M Tris-HCl− 0 M Cl⁻(○), -0.5 M Cl⁻ (●), pH 7.5 and 0. 1 M potassium phosphate, pH 7.6 (△), 20°C, [Mb] 1.7×10⁻⁴ M.

験的に得た O₂ 平衡データと比較すると両者は互いによ く一致した(Fig. 7).

Mb とは異なり Hb A 構成鎖 α^{A} , β^{A} は、単離状態下、 単量体ではなくそれぞれ単量体~2量体の平衡状態およ び4量体として存在することが知られている¹¹⁾.しかし ながら、ガス状リガンドとの反応に関しては、協同作用 その他のフロステリック機能を全く示さないなど、Mb と同様な挙動をとることが報告されている¹¹⁾.したがっ て、上記 Mb の場合と全く同様に、速度定数から P₅₀ を算 出することができる.Table 2 から明らかなように、 α^{A} 鎖については速度法で平均 0.28 mmHg、平衡法で 0.33 mmHg、 β^{A} 鎖については 0.16 mmHg と 0.16 mmHg²²⁾ と両法間で満足すべき一致が得られた.また、 β^{A} 鎖につ いて速度定数から理論計算により描記した O₂ 平衡曲線 は、平衡実験から実際に得た結果とよく一致した(Fig. 8).

考 察

(1)ストップトフロー装置の不感時間の測定 試料溶液を急速に混合して反応を開始し,その時間経

Fig. 8. O_2 equilibrium curve for the isolated subunit β^{A} of hemoglobin A $(\alpha_2^{A}\beta_2^{A})$ calculated from kinetically determined P_{50} as compared with the equilibrium data actually determined. The curve was drawn using the P_{50} value of 0.16 mmHg. Equilibrium experiments : 0.05 M Bis-tris-0 M Cl⁻ (\bigcirc), -0.4 M Cl⁻ (\bigcirc), and -0.7 M Cl⁻ (\triangle), pH 7.3, 20°C, [Hb] 1.7× 10⁻⁴M.

過を追跡するストップトフロー法は、高速反応の速度論 的研究においては極めて有用な研究法で、広い分野で用 いられている.ただ、方法の節でも述べたように、混合 によって反応を開始するため、観測できる反応量は不感 時間(t_d)という「空白の時間」によって制約される.(1)式 から明らかなように、t_dが短いほど、その間に失われる反 応量は少なくなるので、t_dはできる限り短くすることが 望ましい.

不感時間を短くするためには、駆動圧を上げて流速を 速くするか、観測セルの光路長を短くして流路の容積を 小さくすればよいが、駆動圧が高すぎるといわゆるキャ ビテーション(cavitation)が生じて混合能率が低下した り、観測に際してノイズが増大する等の不都合が生ずる. また、光路長が短かすぎると高濃度試料が必要になるこ とと相まって、流路の低抗が増し混合能率の低下を招く. 通常の市販装置では光路長 2 mm,駆動圧7~8 kg/ cm²が限界である.今回使用したストップトフロー分光 光度計については、光路長 2 mmの観測セル、駆動圧7 kg/cm²のとき、t₆は 0.9 ms であった.

taの測定法については、これまでにいくつか報告され

ている4-10). Brissette ら10)の Mg2+と 8 - hydroxyquinoline のキレート生成反応を用いた t_d測定法は,(4) 式と同様の考え方による方法であるが、可逆反応である ため Mg²⁺の濃度に依存して A_{tot}が変化し, logA_{obs}を [Mg²⁺] に対してプロットしたとき直線が得られない. そこで,直線プロットを得るためには(4)式をさらに変形 しなければならない. $\log(A_{obs}/A_{tot})$ を $[Mg^{2+}]$ に対し てプロットすれば直線が得られ、その勾配から taを求め ることができるが、この場合 Atotを別途に測定しなけれ ばならない. この点を考慮し、今回、L-アスコルビン酸 による DCIP 還元反応を用いて Brissette らの方法¹⁰⁾の 改良を図った.L-アスコルビン酸と DCIP の反応は不可 逆反応であるから, DCIP の濃度を一定にすればアスコ ルビン酸の濃度[A]とは無関係に Atot は一定である.そ こで(4)式から, logAobsを [A] に対してプロットすると 直線が得られる. その勾配から t_dが求められ A_{tot}の測定 は不要である. また, L-アスコルビン酸, DCIP は容易に 入手でき,取り扱いが簡単な点においても,taの測定法と して,より実用的であるといえる.

従来から報告されている t_{a} の測定法 $-t_{a}$ =(2.303/ k_{app})log(A_{tot}/A_{obs})として計算する方法と^{4,6}, 一次反応 プロットの外挿から求める方法^{5,8)}-により t_{a} を求め、今 回述べた log A_{obs} vs. [A] プロット法で求めた t_{a} と比較 すると、これらの値は互いによく一致し、本法の有用性 が示された(Table 1).

(2) Mb, Hb A 単離鎖の O₂ 結合速度論

Mb および Hb 単離鎖は、その O_2 平衡において協同 性、Bohr 効果、アニオン効果等のホモトロビックならび にヘテロトロピックなアロステリック機能を示さず、(5) 式のような1 段階 2 分子反応で反応を記述することがで きる.このとき、結合平衡定数 K と速度定数 k', k は K= k'/k で関係づけられる.ヘモグロビン、ミオグロビンの O_2 親和性は一般に、50%飽和時の O_2 分圧(P_{50})で表わす が、Mb および Hb 単離鎖ではヘム間相互作用がないの で、ただ1 個の平衡定数で反応を記述することができ、 その P_{50} は解離平衡定数(すなわち結合平衡定数の逆数) に相当する.したがって、速度定数から k/k'として計算 した P_{50} は平衡論的な実験で直接求めた P_{50} と一致する ことが期待される.

今回, Hb A の α^{A} 鎖, β^{A} 鎖, = ワトリ砂囊平滑筋の Mb 主成分(Mb I)について速度定数から計算した P₅₀ と平 衡論的に求めた P₅₀ はよく一致した(Figs. 7 & 8, Table 2). Mb, Hb 単離鎖における O₂ 結合の速度論的研究に ついては, ストップトフロー法, フラッシュフォトリシ ス法, 温度ジャンプ法等によりこれまでにも報告されて

いるが¹²⁻¹⁶⁾,速度定数から計算した平衡定数(=k'/k) と平衡論的に直接求めた平衡定数 K ではかなりの相違 がみられる. すなわち, 軟体動物の一種であるアメフラ シ(Aplysia)Mb¹³⁾については、速度論と平衡論の結果は 互いに一致しているが, ウマ Mb¹²⁻¹⁴⁾, マッコウクジラ Mb15)では k'/k から求めた値が K の約1.5 倍の値を示 している. α^{A} 鎖, β^{A} 鎖¹⁴⁻¹⁶⁾についても, k'/k 値は K 値 に比べ、約1.5倍および2~3倍の値となっている.速 度論と平衡論による結果の相違については、反応中間体 の存在やコンフォメーション変化などとの関連が論議さ れてはいるが12,14)十分納得できる説明とはいえず、実証 的根拠が示されているわけでもない.また Brunori らに よる温度ジャンプ法の結果は15), Mb, Hb 単離鎖と O2 の 結合が単純な一段階二分子反応で、これ以外の一分子過 程は存在しないことを示している. 今回のストップトフ ロー測定の結果に関する限り, α^A 鎖, β^A 鎖およびニワト リ砂囊 Mb I で、速度定数から算出した Pso と平衡論的 に直接求めた P50はよく一致しており、これらヘムたん ぱくとガス状リガンドとの反応は単純な一段階二分子反 応であると結論することができる. 従来の諸報告におけ る不一致の原因は不明であるが, Mb に関していえば不 純物ないしは変性たんぱくをかなり含む市販品をそのま ま使用していることが、すくなくとも一つの理由として あげられる. 今回の結果は、新鮮筋から抽出、純化した native な新鮮標品を用いて得られたものである. また, Hb 単離鎖についての既報での不一致は、おそらく単離 鎖からの PCMB 除去不完全がその原因の一半をなすも のと思われる. 今回の測定においては, SH 滴定により Hg がほぼ完全(95~115%)に除去されていることを確 認しえた新鮮標品を実験に供した.

結 語

ストップトフロー装置不感時間の簡便な測定法を考案 した.また、ストップトフロー法により、リガンド結合 平衡において協同効果を示さないミオグロビンおよびへ モグロビン単離 α 鎖、 β 鎖の O_2 結合反応を速度論的観 点から検討した.

(1) 単純な不可逆反応である,L-アスコルビン酸による DCIP の還元反応を用いることにより,Brissette らによる不感時間の測定法¹⁰⁾を改良,より簡便なものとした. 従来から報告されている他の測定法との比較により,本 法の有用性が示された.

(2) ニワトリ筋胃平滑筋から単離したミオグロビン, Hb A から単離した α^{A} 鎖, β^{A} 鎖の新鮮標品を用いて,こ れらヘムたんぱくの O_{2} 解離および結合速度定数をスト ップトフロー法により求めた.速度定数から算出した $P_{50} \ge O_2$ 平衡より直接求めた P_{50} はよく一致し、これらへ ムたんぱく $\ge O_2$ の結合反応は、単純な一段階二分子反 応であることを確認した.

稿を終えるにあたり,御指導,御校閲いただきました 榎 泰義教授に深甚の謝意を表します.また,終始,御 援助,御助言をいただきました教室諸兄姉に深謝いたし ます.

本論文の要旨は,第78回近畿生理学談話会(1990年2 月,京都),第80回近畿生理学談話会(1991年2月,和歌 山)において発表した.

文 献

- Chance, B. : J. Franklin Inst. 229 : 455, 613, 737, 1940.
- Eigen, M. and DeMaeyer, L. : *in* Technique of Organic Chemistry (Weissberger, A., ed.). vol. 8, part 2, John Wiley & Sons, New York, London, p 895, 1963.
- 3) Gibson, Q. H. : J. Physiol. 134 : 112-122, 1956.
- 4) Hiromi, K., Ono, S., Itoh, S. and Nagamura, T. : J. Biochem. 64 : 897-900, 1968.
- Hoa, G. H. B. and Douzou, P. : Anal. Biochem. 51: 127-136, 1973.
- 広海啓太郎:酵素反応解析の実際. 講談社,東京, p197,1977.
- 7) Tonomura, B., Nakatani, H., Ohnishi, M., Yamaguchi-Ito, J. and Hiromi, K. Anal. Biochem. 84: 370-383, 1978.
- Peterman, B. F. : Anal. Biochem. 93: 442-444, 1979.
- 9) Nakatani, H. and Hiromi, K. : J. Biochem. 87 :

1805-1810, 1980.

仁

- Brissette, P., Ballou, D. P. and Massey, V. : Anal. Biochem. 181 : 234-238, 1989.
- Antonini, E. and Brunori, M. : Hemoglobin and myoglobin in their reactions with ligands. North -Holland, Amsterdam, London, 1971.
- 12) Antonini, E. : Physiol. Rev. 45 : 123-170, 1965.
- Wittenberg, B. A., Brunori, M., Antonini, E., Wittenberg, J. B. and Wyman, J. Arch. Biochem. Biophys. 111: 576-579, 1965.
- 14) Brunori, M., Noble, R. W., Antonini, E. and Wyman, J. : J. Biol. Chem. 241 : 5238-5243, 1966.
- 15) Brunori, M. and Schuster, T. M. 1 J. Biol. Chem.
 244: 4046-4053, 1969.
- 16) Noble, R. W., Gibson, Q. H., Brunori, M., Antonini, E. and Wyman, J. J. Biol. Chem. 244: 3905-3908, 1969.
- 17) Enoki, Y., Ohga, Y., Kawase, M. and Nakatani,
 A.: Biochim. Biophys. Acta 789: 334-341, 1984.
- 18) Bucci, E. and Fronticelli, C. : J. Biol. Chem. 240 : PC 551-552, 1965.
- 19) Enoki, Y., Ochiai, T., Ohga, Y., Kohzuki, H. and Sakata, S. : Biochim. Biophys. Acta 744 : 71-75, 1983.
- Boyer, P. D. : J. Am. Chem. Soc. 76 : 4331-4337, 1954.
- 21) Altman, P. L. and Dittmer, D. S. Respiration and Circulation. Federation of American Societies for Experimental Biology. p 16-17, 1973.
- 22) Enoki, Y., Ohga, Y., Furukawa, K., Takaya, A., Sakata, S., Kohzuki, H., Shimizu, S. and Tsujii, T. : HEMOGLOBIN 13 : 17-32, 1989.