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Abstract: Glioblastoma (GBM) is the leading malignant intracranial tumor, where prognosis for

which has remained extremely poor for two decades. Immunotherapy has recently drawn attention

as a cancer treatment, including for GBM. Natural killer (NK) cells are immune cells that attack cancer

cells directly and produce antitumor immunity-related cytokines. The adoptive transfer of expanded

and activated NK cells is expected to be a promising GBM immunotherapy. We previously established

an efficient expansion method that produced highly purified, activated primary human NK cells,

which we designated genuine induced NK cells (GiNKs). The GiNKs demonstrated antitumor effects

in vitro and in vivo, which were less affected by blockade of the inhibitory checkpoint receptor

programmed death 1 (PD-1). In the present study, we assessed the antitumor effects of GiNKs, both

alone and combined with an antibody targeting killer Ig-like receptor 2DLs (KIR2DL1 and DL2/3,

both inhibitory checkpoint receptors of NK cells) in vitro and in vivo with U87MG GBM-like cells

and the T98G GBM cell line. Impedance-based real-time cell growth assays and apoptosis detection

assays revealed that the GiNKs exhibited growth inhibitory effects on U87MG and T98G cells by

inducing apoptosis. KIR2DL1 blockade attenuated the growth inhibition of the cell lines in vitro. The

intracranial administration of GiNKs prolonged the overall survival of the U87MG-derived orthotopic

xenograft brain tumor model. The KIR2DL1 blockade did not enhance the antitumor effects; rather,

it attenuated it in the same manner as in the in vitro experiment. GiNK immunotherapy directly

administered to the brain could be a promising immunotherapeutic alternative for patients with GBM.

Furthermore, KIR2DL1 blockade appeared to require caution when used concomitantly with GiNKs.

Keywords: NK cell; glioblastoma; immunotherapy; KIR; GiNKs

1. Introduction

Glioblastoma (GBM) is the most lethal primary malignant brain tumor in adults
and is associated with a poor prognosis. Even with current standard treatments such
as surgery, radiation therapy, chemotherapy, and tumor treating fields (TTFields), the
median overall survival (mOS) is 14.6–20.9 months from randomization and the 5-year
survival rate is <15% [1–4]. Therefore, novel and effective treatment strategies are needed
for patients with GBM, for whom immunotherapy could be a potential treatment option.
Immunotherapy using immune checkpoint inhibitor (ICI) drugs has revolutionized the
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treatment of malignant melanoma and lung, bladder, and renal cancers [5–7]. However,
GBM is resistant to immunotherapy using ICI drugs, including nivolumab, which is a fully
human immunoglobulin (Ig) G4 monoclonal antibody targeting the programmed death 1
(PD-1) immune checkpoint receptor. This resistance is due to the poor antigen-presenting
properties of the brain rather than the tumor-intrinsic immunosuppressive properties of
GBM tumor cells [8,9]. Moreover, GBM is highly resistant to standard treatments due to
a combination of tumor heterogeneity, adaptive expansion of resistant cellular subclones,
immune surveillance evasion, and the manipulation of signaling pathways involved in
tumor progression and the immune response [10].

Based on the above findings, there is great interest in using the properties of natural
killer (NK) cells to develop the next cancer immunotherapy [11]. NK cells were discovered
in the 1970s and are critical in first-line host defense against infections and tumors by
mediating cytotoxic function and producing cytokines without prior sensitization [12–14].
NK cells are innate lymphocytes that act alongside other immune cells in the response
against various malignant tumors. Previously, we focused on NK cell function against
GBM cells and reported on genuine induced NK cells (GiNKs), which are highly purified
human NK cells derived from peripheral blood mononuclear cells (PBMCs) using a feeder-
free method and that exhibited high NK activity against GBM cells in vitro [15,16]. The
expansion method rapidly yielded a large number of highly purified NK cells. Moreover,
the GiNKs exerted an antitumor effect against subcutaneous ectopic GBM-like cell-derived
xenograft models in vivo [17].

NK cell function is regulated by multiple types of signals transduced by the activating
and inhibitory receptors that recognize ligands expressed on potential target cells [13]. NK
cells also demonstrate potent cytotoxic activity against tumor cells by promoting apopto-
sis [14]. Several activating receptors expressed on NK cells recognize the associated ligands
on GBM cells [18,19]. Contrastingly, the inhibitory receptor ligands are associated with NK
cell-mediated cytotoxicity against tumor cells [20–22]. Multiple immune-suppressive re-
ceptors, e.g., killer immunoglobulin (Ig)-like receptors (KIR), PD-1, T cell immunoglobulin
mucin family member 3 (TIM3), lymphocyte activation gene 3 (LAG3), T cell immunore-
ceptor with Ig and ITIM domains (TIGIT), TACTILE (CD96), and transforming growth
factor-ß (TGF-ß) receptor, are expressed on NK cells to prevent NK cells from fully exerting
antitumor effects [13,23–33].

NK cell activation is negatively regulated by negative signal transduction via KIR,
an inhibitory receptor expressed on NK cells that recognizes human leukocyte antigen
(HLA) class I molecules [20,34]. The human KIR family comprises polymorphic Ig-like
molecules expressed on NK cells and small subsets of CD8+ and gd+ T cells [34]. KIR2DL1
and KIR2DL2/3 recognizes distinct HLA-C allotypes or HLA class I, specifically, KIR2DL1
binds HLA-Cw2, -4, -5, and -6, while KIR2DL2/3 bind to -Cw1, -3, -7, and -8 [34]. We
previously analyzed and determined the expression of activating and inhibitory receptor
ligands and NK cells expressing KIR and their corresponding ligand for HLA-ABC [15]
and determined that three glioma cell lines were positive for HLA-ABC. Additionally, two
GBM cell lines (T98G and LN-18) and a GBM-like cell line (U87MG) strongly expressed
HLA class I. Furthermore, the U87MG GBM-like cell line and the T98G human GBM
cell line were positive for HLA-Cw5 and -Cw4/Cw7, respectively [35]. In addition, the
isotype of recombinant human anti-KIR2DL1 antibody (1–7F9) was determined to be IgG4,
which is known to bind CD64 with lower affinity than other IgG isotypes, and therefore is
considered appropriate for a blocking, nondepleting therapeutic monoclonal antibody [34].
1–7F9 represents a humanized antibody with cross reactivity for KIR2DL1 and KIR2DL2/3.
We considered 1–7F9 demonstrate as only anti-KIR2DL1 antibody for U87MG and as both
anti-KIR2DL1 antibody and anti-KIR2DL2/3 antibody for T98G. Moreover, KIR2DL1 has
the strongest inhibitory power, followed by KIR2DL2/3 among the inhibitory KIRs [36].
Therefore, we postulated that blockade antibody of KIR2DL1, a typical inhibitory KIR,
could enhance the antitumor effect of GiNKs on GBM.
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In the present study, we evaluated the in vitro antitumor effects of GiNKs in combina-
tion with anti-KIR2DL1 on the T98G GBM cell line and the U87MG GBM-like cell line. Fur-
thermore, we evaluated the antitumor effects of GiNKs in combination with anti-KIR2DL1
antibodies using intracranial direct infusion in an orthotopic U87MG derived-xenograft
model, which was aimed at clinical application.

2. Results

2.1. KIR2DL1 and KIR2DL2/3 Expression in Gliomas Based on TCGA Data Set

To confirm the KIR2DL1 expression patterns, we obtained the RNA sequencing data of
gliomas from the GlioVis data portal and The Cancer Genome Atlas (TCGA) database [37].
KIR2DL1 was expressed in 3.93 ± 0.18% (mean ± SD converted log2) and 3.81 ± 0.17%
of non-tumor and GBM tissue, respectively. KIR2DL2 was expressed in 4.23 ± 0.27%
and 4.20 ± 0.23% of non-tumor and GBM tissue, respectively. KIR2DL3 was expressed
in 4.69 ± 0.29% and 4.35 ± 0.25% of non-tumor and GBM tissue, respectively. KIR2DL1
and KIR2DL2 expression did not demonstrate differences between GBM and non-tumor
samples in TCGA database (p = 0.08 and 0.69, respectively), while KIR2DL3 expression
demonstrated differences (p < 0.01). The Kaplan-Meier curves following log-rank testing
demonstrated that low KIR2DL1 expression predicted poor OS with significant differences
in TCGA database (p = 0.04), while KIR2DL2 and KIR2DL3 expression did not predict poor
OS in TCGA database (p = 0.29, and 0.33, respectively) (Figure 1A).
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Figure 1. (A) KIR2DL1, KIRDL2, and KIR2DL3 expression patterns in GBM from the GlioVis data

portal and TCGA database. Left: KIR2DL1 and KIR2DL2 were not significantly expressed in GBM

tissues as compared to normal brain tissue in TCGA database (p = 0.08 and 0.69, respectively), while

KIR2DL3 was significantly lower expressed in GBM (p < 0.01). Right: Kaplan-Meier curves based

on mRNA expression from GlioVis data portal and TCGA database. The p-value was determined

using Tukey’s honest significant difference test. Low KIR2DL1 expression predicted poor OS with

significant differences in TCGA database (p = 0.04), while KIR2DL2 and KIR2DL3 expression did

not (p = 0.29, and 0.33, respectively). * p < 0.05. (B) KIR2DL receptors expression pattern on GiNKs.

Left: Representative flow cytometric data of KIR2DL1 and KIRDL2/3 expression on the GiNK

surface. The top row was calculated based on the fluorescent intensity of APC-labeled IgG as

an isotype control (Ctrl). The middle and bottom row were calculated based on the APC-labeled

anti-KIR2DL1 and KIR2DL2/3, respectively. The KIR2DL1 and KIR2DL2/3 expression on the

GiNKs were 11.5% and 32.4%, respectively. Right: The frequency of KIR2DL1+/CD56+ NK cells

and KIR2DL2/3+/CD56+ NK cells were 8.54–17.3% and 21.1–46.8%, respectively, in four healthy

volunteers. At least two independent experiments were performed (n = 8). (C) HLA-C expression

pattern in glioma from the HPA data set. Left: Fragments per kilobase of transcript sequence per

million base pairs sequenced (FKPM) value of HLA-C in gliomas. Right: Kaplan-Meier curves

following log-rank testing demonstrating that low HLA-C expression did not predict poor OS in HPA

database significantly (p = 0.20).
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2.2. KIR2DL1 and KIR2DL2/3 Expression on GiNKs

Flow cytometry analysis detected KIR2DL1 and KIR2DL2/3 expression on the GiNK
cell surface. The frequency of KIR2DL1+/CD56+ and KIR2DL2/3+/CD56+ cells was
8.54–17.3% and 21.1–46.8%, respectively in four healthy volunteers (n = 8), indicating
that the GiNKs demonstrated variable frequencies of KIR2DL1+ and KIR2DL2/3+ cells
(Figure 1B).

2.3. HLA-C Expression in Gliomas in the Human Protein Atlas Data Set and GBM Cell Lines

To confirm the HLA-C expression patterns, we obtained the RNA sequencing data
of gliomas from the Human Protein Atlas (HPA) database [38], which demonstrated that
HLA-C was expressed in glioma tissues. The Kaplan-Meier curves following log-rank
testing demonstrated that low HLA-C expression did not predict poor OS in the HPA
database significantly (p = 0.20) (Figure 1C).

2.4. Effects of GiNKs Both Alone and in Combination with Antibodies (IgG and Anti-KIR2DLs)
Treatment In Vitro

We investigated the growth inhibitory effects of the GiNKs both alone and in combina-
tion with IgG, anti-KIR2DL1 antibody (1–7F9), or anti-KIR2DL2/3 on U87MG and T98G
cells using a real-time cell analysis (RTCA) system.

GiNKs pre-incubated with IgG + IgG significantly inhibited U87MG and T98G cell
growth from 3 h after treatment (effector-to-target; E:T = 0.5:1 and 1:1) (p < 0.001 in both
cell lines). The growth inhibitory effects of GiNKs + IgG on the U87MG and T98G cells
were clearly observed in a cell number-dependent manner (p < 0.001 in both cell lines)
(Figure 2A). GiNKs pre-incubated with anti-KIR2DL1 antibody + anti-KIR2DL1 antibody
also significantly inhibited U87MG and T98G cell growth from 3 h after treatment as
compared to the vehicle alone. However, GiNKs + anti-KIR2DL1 antibody demonstrated
significantly weaker inhibitory effects on U87MG and T98G cell growth as compared
to control group, GiNKs pre-incubated with IgG + IgG from 24 h and 48 h after treat-
ment, respectively (Figure 2B). Compared to the vehicle alone, GiNKs pre-incubated with
control IgG alone significantly inhibited U87MG and T98G cell growth after 3 h from
treatment (p < 0.001 in both cell lines). Similarly, GiNKs pre-incubated with anti-KIR2DL1
antibody alone significantly inhibited U87MG and T98G cell growth after 3 h from treat-
ment (p < 0.001 in both cell lines) as compared to the vehicle alone. However, GiNKs
pre-incubated with anti-KIR2DL1 antibody alone exhibited significantly weaker inhibitory
effects on U87MG cell growth in comparison of GiNKs pre-incubated with IgG alone after
2 h from treatment (p < 0.001), while did not on T98G cell growth (Figure 2C). We also
assessed the growth inhibitory effects of IgG alone or anti-KIR2DL1 alone on U87MG
and T98G cells. Although IgG alone or anti-KIR2DL1 alone do not significantly inhibit
U87MG cell growth compared to the vehicle alone, they significantly inhibited growth
of T98G cells from 24 h after treatment (p < 0.001 in both antibodies) (Figure 2D). GiNKs
pre-incubated with anti-KIR2DL2/3 antibody + anti-KIR2DL2/3 antibody(upper), only
GiNKs pre-incubated with anti-KIR2DL2/3 antibody (middle), and only anti-KIR2DL2/3
antibody (lower) did not exhibit T98G cell growth in anytime compared to the GiNKs
pre-incubated with IgG + IgG (upper), only GiNKs pre-incubated with IgG (middle), and
only IgG (lower), respectively (Figure 2E). The different responses of U87MG and T98G cells
to these antibodies suggest that these two cell lines are different character. The apoptosis
detection assays demonstrated that GiNKs + IgG and GiNKs + anti-KIR2DL1 antibody
induced U87MG and T98G cell apoptosis at 24 h. GiNKs + IgG significantly enhanced
apoptosis induction of U87MG and T98G cells as compared to the vehicle alone. Addition-
ally, GiNKs + IgG induced significantly increased the apoptotic cell population of U87MG
and T98G cells at 24 h as compared to GiNKs + anti-KIR2DL1 antibody (Figure 3).
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Figure 2. Enhanced growth inhibition of GBM cells by GiNKs. Images depict the real-time growth

inhibition of U87MG (top) and T98G glioma cells (bottom) by GiNKs both pre-incubated with antibody,

IgG, anti-KIR2DL1 (1–7F9) or anti-KIR2DL2/3, alone and in combination with antibody, and antibodies

alone without GiNKs. The X- and Y-axes respectively depict the co-culture time and relative normalized cell

index of each time point divided by the cell index of the co-culture start point. Data are the mean ± SEM.

Left: Graphs illustrating representative data of real-time normalized cell index value of glioma cell lines.

Right: Bar graphs illustrating the real-time cell analysis (RTCA)-based growth inhibition assays. Statistical

differences were determined by two-way ANOVA followed by Tukey’s test. **** p < 0.0001, *** p < 0.001,

** p < 0.01, * p < 0.05, ns: not significant. (A) Representative data of real-time normalized cell index value of

glioma cell lines co-cultured with GiNKs pre-incubated with IgG in combination with IgG at an effector-to-

target (E:T) cell ratio of 1:1 (red) or 0.5:1 (green). The blue line indicates target cell lines only (NB). (n = 6, in

two independent experiments in triplicate) (B) Representative data of real-time normalized cell index value

of glioma cell lines co-cultured with GiNKs pre-incubated with IgG alone (red) or anti-KIR2DL1 antibody

alone (green) at an E:T cell ratio of 1:1. The blue line indicates target cell lines only (negative background;

NB) (n = 12, in four independent experiments in triplicate) (C) Growth inhibition of glioma cell lines by

GiNKs pre-incubated with IgG or anti-KIR2DL1 antibody at an E:T cell ratio of 1:1 in combination with

IgG (red) or anti-KIR2DL1 antibody (green), respectively. The growth curve (blue) indicates cell lines only

(NB). (n = 12, in four independent experiments in triplicate) (D) Growth inhibition of glioma cell lines

by IgG (red) or anti-KIR2DL1 (green) antibody alone, respectively. The growth curve (blue) indicates

cell lines only (NB). (n = 6, in two independent experiments in triplicate) (E) GiNKs pre-incubated with

anti-KIR2DL2/3 antibody + anti-KIR2DL2/3 antibody (green) (upper), only GiNKs pre-incubated with

anti-KIR2DL2/3 antibody (green) (middle), and only anti-KIR2DL2/3 antibody (green) (lower) did not

exhibit T98G cell growth in anytime compared to the GiNKs pre-incubated with IgG + IgG (red) (upper),

only GiNKs pre-incubated with IgG (red) (middle), and only IgG (red) (lower), respectively. The blue line

indicates target cell lines only (NB). (n = 9, 9, and 6 in three, three, and two, independent experiments in

triplicate, respectively).
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Figure 3. The percentage of apoptotic cells in U87MG (top) and T98G GBM cells (bottom) induced

by target cell only; NB, GiNKs pre-incubated with IgG, and anti-KIR2DL1 antibody at 24 h. Left:

Representative panels depicting the fluorescence intensity analysis of the PI and annexin V–APC

fractions. Target cell only; NB (the left rows), GiNKs pre-incubated with IgG (the middle rows), and

anti-KIR2DL1 antibody (the right rows). Right: Bar graphs illustrating the apoptotic cell analysis

based on the flow cytometric data of APC-expressing cells. Statistical differences were determined by

two-way ANOVA followed by Tukey’s test. **** p < 0.0001, ** p < 0.01, * p < 0.05.

2.5. Effects of GiNK Treatment on an Orthotopic GBM-like Cell-Derived Xenograft Model

We evaluated the antitumor effects of GiNKs against intracranial orthotopic xenografts
derived from an U87MG model using NOG mice in vivo. U87MG cells were implanted
into NOG mouse brains, followed by intracranial infusions (treatments) via the same burr
hole of the U87MG implantation (Figure 4A). The IgG group was significantly associated
with a longer survival time compared to the NB group (p = 0.037) (Figure 4B). However,
the anti-KIR2DL1 group was not significantly associated with survival time compared to
the other groups (vs. NB group; p = 0.70, vs. IgG group; p = 0.16).
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Figure 4. Effects of direct infusion of GiNKs pre-incubated with IgG or anti-KIR2DL1 in an orthotopic

xenograft murine model with tumors derived from GBM-like cells. (A) Schematic of the experimental

design. (B) Graph depicting the Kaplan–Meier curve. Blue, green, and red lines represent the NB

group (n = 6), anti-KIR2DL1 group (n = 6), and IgG group (n = 6), respectively. The IgG mice

were significantly associated with longer survival time compared to the NB mice (p = 0.037). The

anti-KIR2DL1 mice were not significantly associated with survival time as compared to the other

groups (vs. NB group; p = 0.70, vs. IgG group; p = 0.16). (C) Micrographs of HE staining overview

(top) and ×400 (bottom) magnification. Left: Histocytological features at the time of autopsy of NB

(left), anti-KIR2DL1 (center), and IgG (right) tumors. Scale bars, 50 µm. Statistical differences were

determined by two-way ANOVA followed by Tukey’s test. * p < 0.05, ns: not significant.

2.6. Histological Analysis

The histological analysis revealed that the tumors from all groups exhibited human
GBM-like histological features at the time of autopsy (Figure 3).

3. Discussion

As GBM has proven highly resistant to standard treatments [10], immunotherapy
could be a novel and effective treatment thereof. Although the success of ICIs in malig-
nant tumors such as melanoma and non–small cell lung cancer rapidly increased interest
in immunotherapy as an alternative treatment for GBM, several phase 3 clinical trials
of ICI drugs against newly diagnosed and recurrent GBM reported that they were not
effective [6–9]. One possible reason for the inefficacious treatment is that GBM is a more
aggressive, strongly heterogeneous, immunologically “cold”, and rapid-progression tu-
mor [8,9]. One factor believed to contribute to the failure of ICI therapy is the primary
focus of the treatment on single targets, such as chimeric antigen receptor-modified T
cell–epidermal growth factor receptor variant III (CART-EGFRvIII) cells. Nevertheless, new
approaches to resolve the issue of cancer immune evasion have been reported. A novel
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immunotherapy with vaccine therapy using oncolytic herpes virus G47∆ was effective for
patients with residual or recurrent GBM after radiation therapy and temozolomide [39–41].

We have long focused on immunotherapy with NK cells as a novel therapeutic ap-
proach and have reported its results [15,17,42,43]. Immunotherapy utilizing NK cells can
recognize GBM through mechanisms different from that in T cell-based therapies. Com-
pared to T cell immunotherapy, NK cell immunotherapy of GBM has received less attention.
NK cells recognize cancer cells without antigen sensitization [44] and can remove the
abnormal cells as part of the innate immune system response [45,46]. NK cells exhibit
potent cytotoxic activity against tumor cells by inducing apoptosis [14] and act as immune
surveillance and suppress tumor development, proliferation, and metastasis [47,48]. The
antitumor potential of NK cells has been suggested for more than 40 years. However, their
clinical activity remains difficult to predict, responses are often not sustained, and their
efficacy against tumors beyond acute myeloid leukemia is unclear [49,50]. The antitumor
efficacy of NK cells has not been applied clinically. Previously, we expanded human periph-
eral blood NK cells harvested using a novel culture system for clinical application as GiNKs
and reported a strong antitumor effect on GBM in vitro [15,16]. Our selective expansion
method for autologous human NK cells is a simple, chemically defined, and feeder-free
method that achieves the highest purity and greatest expansion scale. GiNKs have the
potential to overcome the issues of previous NK cell-based immunotherapies. Furthermore,
we have reported the antitumor effects of GiNKs on GBM cell lines in vitro. In the present
study, we verified the antitumor effect of GiNKs on GBM cells via real-time assays. We
confirmed that GiNKs exerted 46.9% and 57.2% growth inhibition against U87MG cells
and T98G cells, respectively, at 3 h at an E:T ratio of 1:1. Our findings indicated that GiNKs
exerted immediate cytotoxic efficiency on GBM cell lines in vitro. Moreover, we have
reported an antitumor effect of GiNKs against subcutaneously implanted GBM-like ectopic
xenograft models in vivo [17]. In the present study, we confirmed that direct intracranial
infusion of NK cells in the form of GiNKs exerted antitumor effects on an orthotopic
xenograft murine model in vivo. Altogether, these findings indicated that NK cell-based
immunotherapy using GiNKs could represent a promising novel treatment option for GBM.

The balance of signals from the inhibitory and activating receptors on NK cells reg-
ulates their cytotoxic function against tumor cells [13,51]. The ligands for NK inhibitory
receptors, such as PD-1, NKG2A, and KIR2DL, were associated with NK cell cytotoxicity
against tumor cells [11,13,52]. Since KIR2DL1 and KIR2DL2/3 are both inhibitory receptors,
we have considered blockade of these inhibitory receptors result in enhance antitumor
effects of GiNKs in vitro and in vivo. Moreover, blockade of inhibitory KIR with IL-2
triggering reversed the functional hypoactivity of tumor-derived NK cells in GBM [53].
However, the present study demonstrated that GiNKs + KIR2DL1 blockade using 1–7F9
did not exhibit significantly enhanced antitumor effects but rather attenuated antitumor
effects of GiNKs in vitro and in vivo. The extracellular domains of some activating KIRs
demonstrate high sequence homology to those of some inhibitory KIRs (e.g., KIR2DS1–
KIR2DL1, KIR2DS2–KIR2DL2, and KIR3DS1–KIR3DL1 pairs) [54]. Anti-KIR2DL1 antibody
might also inhibit the effect of KIR2DS1 expressed on GiNKs. While the inhibitory KIR2DL1
binds to all HLA-C C2 with high avidity, the activating KIR2DS1, which is expressed on
NK cell clones, also recognizes HLA-C C2 albeit with lower affinity than KIR2DL1 [55].
Consequently, anti-KIR2DL1 antibody might also inhibit the effect of KIR2DS1 expressed on
GiNKs. The KIR2DL1 blockade did not enhance the antitumor effects; rather, it attenuated
it in the same manner as in the in vitro experiment. Moreover, KIR2DL1 expression tends to
be lower in GBM tissue than in non-tumor tissue, as demonstrated by the GlioVis data por-
tal and TCGA database. Following log-rank testing, Kaplan-Meier curves revealed that low
KIR2DL1 expression predicted significantly poor OS (p = 0.04), which might support the
present findings. Furthermore, our group previously reported that PD-1-blocking antibod-
ies did not exert an additive effect with GiNKs to prolong the survival of xenograft murine
models bearing subcutaneous U87MG-derived tumors [17]. Therefore, our findings suggest
that blocking antibodies against inhibitory ligands or receptors may not exert an additive
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effect with GiNKs against GBM cells. This supposition should be examined via scientific
evaluation of many other inhibitory receptors expressed on NK cells. The direct intracranial
infusion of GiNKs was highly effective against xenograft GBM cells independent of the
KIR pathway. Nevertheless, the role of the KIR pathway in GBM remains controversial. It
is possible that the GBM immunosuppression system against NK cells increases complexity
through evasion via another pathway, for example, NKG2D engagement on human NK
cells leads to DNAM-1 hypo-responsiveness [55]. Alternatively, KIR2DL1 might exert
opposing effects on the inhibitory and activating systems in T cells [56]. Similarly in GiNKs,
stimulation from KIR2DL1, which is typically an inhibitory system, contributes to NK cell
activation, and inhibiting KIR2DL1 might have attenuated the anti-tumor effect of NK cells
against GBM.

To our knowledge, this is the first report to evaluate the antitumor effect of GiNKs as
highly purified human NK cells against an orthotopic xenograft murine GBM model. We
previously reported antitumor effects in ectopic subcutaneous xenograft models derived
from the U87MG GBM-like cell line [17]. In our orthotopic xenograft GBM model, NOG
mice were intracranially implanted with U87MG cells, then GiNKs were subsequently
intracranially infused via the same burr hole. Nonetheless, the anti-tumor efficacy of feeder
cell-derived NK cells on GBM was recently documented [57]. Our GiNKs exhibited a
potent anti-tumor effect compared to the NK cells expanded by a feeder cell-based culture.
Furthermore, the GiNKs were readily accessible and of greater clinical utility compared to
NK cells.

The blood–brain barrier (BBB) significantly reduces the efficacy of existing systemic
therapies [58]. A novel immunotherapy with vaccine therapy using intratumoral adminis-
tration of oncolytic herpes virus G47∆ was effective for patients with residual or recurrent
supratentorial GBM after radiation therapy and temozolomide [39,40]. Direct intracranial
injection of GiNKs also exerted specific antitumor effects, circumventing the BBB and
increasing efficacy. The present study demonstrated that intracranial direct infusion of
GiNKs prolonged the OS of the orthotopic xenograft GBM murine model. Moreover, the
histological features at the time of autopsy supported the OS results. We simulated surgical
removal of the tumor and continued local immunotherapy with intracranial injection of
GiNKs and conducted the present research. Additionally, the implantation of fibrin gel as a
T cell delivery system following tumor resection was reported recently and may enhance
the efficacy of GiNKs and lead to practical treatment [59]. Finally, the present study demon-
strated that the IgG group had significantly prolonged OS compared with the NB and
anti-KIR2DL groups. Our findings suggested that intracranial direct infusion of GiNKs was
highly effective against the orthotopic GBM-like cell-derived xenograft model. Moreover,
various immunotherapy studies using allogeneic NK cells were reported recently [60,61].
NK cells do not require HLA matching. Autologous and allogeneic NK cells have the poten-
tial to overcome graft versus host disease. In addition, several clinical trials have exhibited
the safety of allogeneic NK cell transfer [62]. Moreover, our GiNKs are allogeneic NK cells.
To overcome the limitation of autologous NK cell-based immunotherapy, immunotherapy
using allogeneic NK cells may be a treatment for patients with GBM.

Our study has some limitations. First, we used PBMCs derived from healthy volun-
teers. Typically, inducing GiNKs from the blood of patients with GBM is challenging due
to the possibility of the patients having an immune function disorder [63]. Second, we
used GBM cell lines, are known for their low HLA expression and not GBM patient tissue-
derived cells, which do not reflect the heterogeneity of patient GBM. Finally, alkylating
agents of cancer treatment such as temozolomide generally inhibit hematopoietic stem
cell proliferation and limit lymphocyte numbers in the periphery [2]. In this situation, NK
cells may also demonstrate decreased reactivity. It is necessary to investigate whether it is
possible to induce GiNKs using blood from patients with GBM, as it is possible that the
adoptively transferred GiNKs might exhibit limited persistence.
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4. Materials and Methods

4.1. Reagents

Recombinant human anti-KIR2DL1 antibody (clone 1–7F9) was purchased from Cre-
ative Biolabs (Shirley, NY, USA). Anti-KIR2DL2/3, anti-human (clone DX27) was purchased
from Miltenyi Biotech (Bergisch, Gladbach, Germany). The isotype control human IgG anti-
body (clone CB4) was purchased from Medical and Biological Laboratories (MBL Co. Ltd.,
Tokyo, Japan). 1–7F9 represents a humanized antibody with cross reactivity for KIR2DL1
and KIR2DL2/3.

4.2. GBM Cell Lines

The human U87MG GBM-like cell line was from American Type Culture Collection
(Manassas, VA, USA). The T98G GBM cell line was from RIKEN BioResource Research
Center (Tsukuba, Japan). The cells were maintained in Dulbecco’s modified Eagle’s medium
(Life Technologies, Carlsbad, CA, USA) supplemented with 10% heat-inactivated fetal
bovine serum (MP Biomedicals, Tokyo, Japan), 100 U/mL penicillin, and 100 µg/mL
streptomycin (Thermo Fisher Scientific, Waltham, MA, USA) at 37 ◦C in a humidified 5%
CO2-containing atmosphere.

4.3. Animals

Six-to-eight-week-old female nonobese diabetes/severe combined immunodeficiency/gc
null (NOD/SCID/NOG) mice were purchased from the Central Institute for Experimental
Animals (Kanagawa, Japan). Mice were housed in specific pathogen-free environment
under the condition of 12 h light/12-h dark cycle, free access to food and water. All
procedures including care of mice, were performed in accordance with Policy on the Care
and Use of Laboratory Animals, Nara Medical University and Animal Research: Reporting
of In Vivo Experiments (ARRIVE) guidelines. The study was approved by The Animal
Care and Use Committee in Nara Medical University (Number; 13403).

4.4. Expansion of GiNKs

The highly purified primary NK cells derived from human peripheral blood were
expanded as described previously [15]. Briefly, peripheral blood mononuclear cells (PBMCs)
were obtained from 24 mL heparinized peripheral blood from four healthy volunteers
(mean age, 36.25 years). CD3-depleted PBMCs were isolated using a RosetteSep™ Human
CD3 Depletion Cocktail (STEMCELL Technologies, Vancouver, Canada) according to
the manufacturer’s prescribed protocol. Initially, 24 mL heparinized peripheral blood
was mixed with 120 µL (50 µL/mL) of RosetteSep™ Human CD3 Depletion Cocktail,
followed by incubation for 20 min at room temperature (25 ◦C). Next, 24 mL heparinized
peripheral blood was diluted with 24 mL (equal to sample volume) of AIM V medium
(Life Technologies, New York, NY, USA) and mixed gently. Then, the diluted sample was
carefully layered on top of the density gradient medium by adding it to a tube containing
24 mL (equal to primary sample volume) of Lymphoprep™ (STEMCELL Technologies),
being careful to minimize their mixing. Further, the 72 mL of sample was centrifuged at
1200× g for 20 min. Subsequently, the resulting enriched cell layer (PBMCs) was harvested
and transferred to new tubes, and these PBMCs were mixed with AIM-V medium (Life
Technologies) and centrifuged at 1700× g for 7 min. Finally, the isolated cells (approximately
1.0–3.0 × 107 cells) harvested were placed in a T25 culture flask (Corning, Steuben, NY, USA)
containing 10mL of AIM V medium (Life Technologies, New York, NY, USA) supplemented
with 10% autologous plasma, 50 ng/mL recombinant human interleukin (rhIL)-18 (Medical
and Biological Laboratories Co., Ltd.; MBL, Nagoya, Japan), and 3000 IU/mL rhIL-2
(Primmune Inc., Kobe, Japan) at 37 ◦C in a humidified 5% CO2-containing atmosphere. The
AIM V medium supplemented with 3000 IU/mL rhIL-2 was replenished as necessary until
used. All GiNKs were incubated for from 7 to 10 days prior to use.
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4.5. Determination of Surface Antigen Expression

The cells were stained with the appropriate antibodies and fixed in 1% paraformalde-
hyde containing phosphate-buffered saline (PBS) at 4 ◦C for >30 min. Data were obtained
using a BD FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA) and an-
alyzed using FlowJo version 10 (BD Biosciences). The following antibodies were used:
Alexa 488-labeled anti-CD56 (clone B159, BD Pharmingen, Franklin Lakes, NJ, USA), allo-
phycocyanin (APC)-labeled anti-KIR2DL1 (REA284, Miltenyi Biotech), and APC-labeled
anti-KIR2DL2/3 (DX27, Miltenyi Biotech, Bergisch, Gladbach, Germany). The isotype
control was APC-labeled IgG (REA293, Miltenyi Biotech).

4.6. Growth Inhibition Assays

The growth inhibitory effect on the U87MG and T98G cells was investigated using
xCELLigence real-time cell analysis (RTCA) S16 and DP instruments (ACEA Biosciences,
San Diego, CA, USA). The procedure has been described previously [42]. Briefly, complete
medium (100 µL) was added to each well on E Plate 16 (ACEA Biosciences) and background
impedance was measured at 37 ◦C in a humidified 5% CO2-containing atmosphere. T98G
or U87MG cells (2 × 104) suspended in 50 µL complete medium were added to each well as
the target cells and impedance measurement was recorded for 72 h. After 24 h, the GiNKs
(50 µL) were added to each well as the effector cells in the defined effector-to-target (E:T)
cell ratios. The GiNKs were pre-incubated with control IgG, anti-KIR2DL1, or KIR2DL2/3
antibody prior for 30 min to use. Then, the growth inhibition assays were performed in
the presence of 1 µg/mL IgG, anti-KIR2DL1, or anti-KIR2DL2/3. KIR2DL2/3 bind to
HLA-Cw1, -3, -7, and -8 [34]. Furthermore, the U87MG GBM-like cell line and the T98G
human GBM cell line were positive for HLA-Cw5 and -Cw4/Cw7, respectively [35]. To
detect growth inhibitory effect of KIR2DL2/3, the T98G human GBM cell line was only
used as the target cell.

4.7. Apoptosis Detection Assays

The apoptosis detection assays were performed using APC-conjugated annexin V and
propidium iodide (PI) solution (both, BioLegend, San Diego, CA, USA) according to the
manufacturer’s instructions. Briefly, the GiNKs were incubated with control IgG, anti-
KIR2DL1, or anti-KIR2DL2/3 antibody for 30 min prior to use. Then, the U87MG and T98G
cells were exposed to the GiNKs at E:T ratios of 1:1 in the presence or absence of 1 µg/mL
control IgG, anti-KIR2DL1, or anti-KIR2DL2/3 for 24 h. Following incubation, the floating
cells and detached cells were collected and washed twice by cold Cell Staining Buffer
(BioLegend) and resuspended in Annexin V Binding Buffer (BioLegend) at a concentration
of 106 cells/mL. Then, 5 µL APC-conjugated annexin V and 10 µL PI solution were added
to the cell suspension of 100 µL Binding Buffer. The cells were gently mixed and incubated
for 15 min at room temperature (25 ◦C) in the dark. Finally, 400 µL Binding Buffer was
added and the apoptotic tumor cells were detected with a BD FACSCalibur flow cytometer
(BD Biosciences). The data were analyzed using FlowJo version 10 (BD Biosciences).

4.8. In Vivo Orthotopic Xenograft Assays

The in vivo orthotopic xenograft assay was performed as described previously [43].
Briefly, the mice were anesthetized by inhalation of isoflurane mixed with air (induction,
2.5%; maintenance, 1.5%) and fixed on a stereotaxic instrument for mice (SR-6M-HT, Tokyo,
Japan). The mice were stereotactically infused with 2 µL native Hank’s buffered salt
solution (HBSS) containing 105 U87MG cells into the right thalamus (2 mm lateral and
2 mm posterior from the bregma, and 3 mm dorsoventral from the outer border of the
cranium) using an infusion syringe pump (Harvard Apparatus, Holliston, MA, USA)
mounted with a Hamilton syringe (33S-gauge needle). The mice were randomly assigned
to three intracranial infusion groups: negative background (NB, HBSS only), IgG [NK
cells pre-incubated with IgG (106 cells) + control IgG (1 µg)], and anti-KIR2DL1 [NK cells
pre-incubated with anti-KIR2DL1 (106 cells) + anti-KIR2DL1 (1 µg)]. The cells and reagents
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prepared using the aforementioned settings were directly infused intracranially using an
infusion syringe pump via the same burr hole used to implant the U87MG cells earlier. The
infusion speed was 1 µL/min for both the U87MG and NK cells.

4.9. Histochemical Analysis

The intracranial tumors were fixed in 10% neutral-buffered formalin and embedded
in paraffin. Sections (5-µm thick) were placed on glass slides and stained with hematoxylin
and eosin (HE). Photographs were captured using a BX-710 microscope unit (KEYENCE,
Osaka, Japan) at ×40 and ×200 magnification.

4.10. Statistical Analysis

All results are reported as the mean ± standard deviation (SD) or the mean ± standard
error of the mean (SEM). The statistical analyses were performed using Prism 9 (GraphPad
Software Inc., San Diego, CA, USA). The log-rank test was performed for statistical analysis
of survival time. The statistical significance of differences was determined using one- or
two-way analysis of variance (ANOVA), followed by Tukey’s test for multiple comparisons.
All reported p-values were 2-sided and considered statistically significant at p < 0.05,
p < 0.01, p < 0.001, and p < 0.0001.

5. Conclusions

We demonstrated that immunotherapy using expanded and activated NK cells, i.e.,
GiNKs, directly administered into the brain may be a promising immunotherapeutic
alternative in patients with GBM. These results could influence the standard treatment of
patients with GBM and lead to novel treatment strategies.
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