|
GINMU >
01 奈良県立医科大学 >
012 大学院 >
0122 学位請求論文 >
01221 博士論文(医学) >
2021年度 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10564/3962
|
タイトル: | Development of alternative gene transfer techniques for ex vivo and in vivo gene therapy in a canine model. |
その他のタイトル: | 犬モデルにおける ex vivo および in vivo 遺伝子治療のための代替遺伝子導入技術の開発 |
著者: | Noda, Masashi Tatsumi, Kohei Matsui, Hideto Matsunari, Yasunori Sato, Takeshi Fukuoka, Yasushi Hotta, Akitsu Okano, Teruo Kichikawa, Kimihiko Sugimoto, Mitsuhiko Shima, Midori Nishio, Kenji |
キーワード: | Gene therapy Dog Cell sheet Hydrodynamic injection Hemophilia |
発行日: | 2021年9月 |
出版者: | Elsevier |
引用: | Regenerative therapy Vol.18 p.347-354 (2021 Sep) |
抄録: | Introduction: Gene therapy have recently attracted much attention as a curative therapeutic option for inherited single gene disorders such as hemophilia. Hemophilia is a hereditary bleeding disorder caused by the deficiency of clotting activity of factor VIII (FVIII) or factor IX (FIX), and gene therapy for hemophilia using viral vector have been vigorously investigated worldwide. Toward further advancement of gene therapy for hemophilia, we have previously developed and validated the efficacy of novel two types of gene transfer technologies using a mouse model of hemophilia A. Here we investigated the efficacy and safety of the technologies in canine model. Especially, validations of technical procedures of the gene transfers for dogs were focused. Methods: Green fluorescence protein (GFP) gene were transduced into normal beagle dogs by ex vivo and in vivo gene transfer techniques. For ex vivo gene transfer, blood outgrowth endothelial cells (BOECs) derived from peripheral blood of normal dogs were transduced with GFP gene using lentivirus vector, propagated, fabricated as cell sheets, then implanted onto the omentum of the same dogs. For in vivo gene transfer, normal dogs were subjected to GFP gene transduction with non-viral piggyBac vector by liver-targeted hydrodynamic injections. Results: No major adverse events were observed during the gene transfers in both gene transfer systems. As for ex vivo gene transfer, histological findings from the omental biopsy performed 4 weeks after implantation revealed the tube formation by implanted GFP-positive BOECs in the sub-adipose tissue layer without any inflammatory findings, and the detected GFP signals were maintained over 6 months. Regarding in vivo gene transfer, analyses of liver biopsy samples revealed more than 90% of liver cells were positive for GFP signals in the injected liver lobes 1 week after gene transfers, then the signals gradually declined overtime. Conclusions: Two types of gene transfer techniques were successfully applied to a canine model, and the transduced gene expressions persisted for a long term. Toward clinical application for hemophilia patients, practical assessments of therapeutic efficacy of these techniques will need to be performed using a dog model of hemophilia and FVIII (or FIX) gene. |
内容記述: | 博士(医学)・乙第1517号・令和3年12月21日 © 2021, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/). |
URI: | http://hdl.handle.net/10564/3962 |
ISSN: | 23523204 |
DOI: | https://doi.org/10.1016/j.reth.2021.08.009 |
学位授与番号: | 24601B1517 |
学位授与年月日: | 2021-12-21 |
学位名: | 博士(医学) |
学位授与機関: | 奈良県立医科大学 |
出現コレクション: | 2021年度
|
このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。
|