DSpace DSpace Softwareについて English
 

GINMU >
01 奈良県立医科大学 >
012 大学院 >
0122 学位請求論文 >
01221 博士論文(医学) >
2022年度 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10564/4083

タイトル: Development of a New Method to Trace Patient Data Using the National Database in Japan.
その他のタイトル: NDBを用いた新たな患者追跡手法の開発
著者: Myojin, Tomoya
Noda, Tatsuya
Kubo, Shinichiro
Nishioka, Yuichi
Higashino, Tsuneyuki
Imamura, Tomoaki
キーワード: national health insurance
insurance claim
NDB
patient tracing
database
発行日: 2022年
出版者: 日本生体医工学会
引用: Advanced Biomedical Engineering Vol.11 p.203-217 (2022)
抄録: The National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB) is a comprehensive database containing health insurance claim information. The structure of the NDB complicates long-term cohorts for two main reasons. First, the NDB data are stored on a per-claim basis. Second, the NDB is a billing-focused record structure. Therefore, the objective of this study was to use ID0 to modify the data structure to allow for long-term cohorts, provided that the data volume is not increased and the runtime per data year is maintained within one month. The NDB uses two primary keys (ID1 and ID2) made from hash values that mask personally identifiable information. ID0 is our recently developed key from ID1 and ID2, which improves patient-matching efficiency with excellent long-term tracing performance. Our study used claim data with filing dates between April 2013 and March 2016 to trace hospitalizations of one month or longer, including outpatient care, in three steps. In Step 1, claims were transferred to a CD-record format. As some diagnosis procedure combination (DPC) claim records contain a mixture of overlapping comprehensive and piece-rate data, we sorted and reorganized them. In Step 2, pharmacy and medical outpatient claims were integrated using the ID0 key, the medical institution code for issuing a prescription, and the prescription issue date. In Step 3, the transferred data were combined and converted from consecutive hospitalization days into sequences based on ID0, the medical institution code, and hospital ward classification. Consequently, the size of the originally extracted comma-separated variable dataset for three years (approximately 10.5 TB) was reduced to an approximately 6 TB main database file that was usable for processing. The process took approximately three months. With similar conventional methods, the data size was 30 times larger, and it took more than seven months to process a year's worth of data. In addition, to demonstrate the application of this method, we conducted a six-year mortality cohort for all Japanese citizens. Our technique makes it easy to perform follow-up and longitudinal cohort surveys while accurately tracing patient data in large-scale medical claims databases.
内容記述: 博士(医学)・甲第854号・令和4年12月22日
Copyright: ©2022 The Author(s). This is an open access article distributed under the terms of the Creative Commons BY 4.0 International (Attribution) License (https:// creativecommons.org/licenses/by/4.0/legalcode), which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.
URI: http://hdl.handle.net/10564/4083
ISSN: 21875219
DOI: https://doi.org/10.14326/abe.11.203
学位授与番号: 24601A854
学位授与年月日: 2022-12-22
学位名: 博士(医学)
学位授与機関: 奈良県立医科大学
出現コレクション:2022年度

このアイテムのファイル:

ファイル 記述 サイズフォーマット
01甲854本文の要旨.pdf甲854本文の要旨218.55 kBAdobe PDF見る/開く
02甲854審査要旨.pdf甲854審査要旨230.22 kBAdobe PDF見る/開く
03甲854本文.pdf甲854本文2.47 MBAdobe PDF見る/開く
04甲854Suppl.Fig..pdf甲854Suppl.Fig.256.52 kBAdobe PDF見る/開く
05甲854Suppl.Table.pdf甲854Suppl.Table59.26 kBAdobe PDF見る/開く

このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。

 

Valid XHTML 1.0! Powered by DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - ご意見をお寄せください