GINMU >
01 奈良県立医科大学 >
012 大学院 >
0122 学位請求論文 >
01221 博士論文(医学) >
2023年度 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/10564/4366
|
タイトル: | Early diagnosis of amyotrophic lateral sclerosis based on fasciculations on muscle ultrasonography: A machine learning approach |
その他のタイトル: | 筋超音波検査の線維束性収縮に基づく筋萎縮性側索硬化症の早期診断マーカー |
著者: | Fukushima, Koji Takamatsu, Naoko Yamamoto, Yuki Yamazaki, Hiroki Yoshida, Takeshi Osaki, Yusuke Haji, Shotaro Fujita, Koji Sugie, Kazuma Izumi, Yuishin |
キーワード: | Amyotrophic lateral sclerosis Early diagnosis Fasciculation Machine learning Muscle ultrasonography |
発行日: | 2022年8月 |
出版者: | Elsevier B.V. |
引用: | Clinical Neurophysiology. 2022 Aug, vol.140, p.136-144 |
抄録: | "Objective: Although fasciculation on muscle ultrasonography (MUS) is useful in diagnosing amyotrophic lateral sclerosis (ALS), its applicability to early diagnosis remains unclear. We aimed to develop and validate diagnostic models especially beneficial to early-stage ALS via machine learning.
Methods: We investigated 100 patients with ALS, including 50 with early-stage ALS within 9 months from onset, and 100 without ALS. Fifteen muscles were bilaterally observed for 10 s each and the presence of fasciculations was recorded. Hierarchical clustering and nominal logistic regression, neural network, or ensemble learning were applied to the training cohort comprising the early-stage ALS to develop MUS-based diagnostic models, and they were tested in the validation cohort comprising the laterstage ALS.
Results: Fasciculations on MUS in the brainstem or thoracic region had high specificity but limited sensitivities and predictive profiles for diagnosis of ALS. A machine learning-based model comprising eight muscles in the four body regions had a high sensitivity (recall), specificity, and positive predictive value (precision) for both early- and later-stage ALS patients.
Conclusions: We developed and validated MUS-fasciculation-based diagnostic models for early- and later-stage ALS.
Significance: Fasciculation detected in relevant muscles on MUS can contribute to the diagnosis of ALS from the early stage." |
内容記述: | 権利情報:@ 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved. |
URI: | http://hdl.handle.net/10564/4366 |
ISSN: | 1388-2457 |
DOI: | https://doi.org/10.1016/j.clinph.2022.06.005 |
学位授与番号: | 24601甲第915号 |
学位授与年月日: | 2024-03-14 |
学位名: | 博士(医学) |
学位授与機関: | 奈良県立医科大学 |
出現コレクション: | 2023年度
|
このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。
|