DSpace DSpace Softwareについて English
 

GINMU >
01 奈良県立医科大学 >
012 大学院 >
0122 学位請求論文 >
01221 博士論文(医学) >
2023年度 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10564/4366

タイトル: Early diagnosis of amyotrophic lateral sclerosis based on fasciculations on muscle ultrasonography: A machine learning approach
その他のタイトル: 筋超音波検査の線維束性収縮に基づく筋萎縮性側索硬化症の早期診断マーカー
著者: Fukushima, Koji
Takamatsu, Naoko
Yamamoto, Yuki
Yamazaki, Hiroki
Yoshida, Takeshi
Osaki, Yusuke
Haji, Shotaro
Fujita, Koji
Sugie, Kazuma
Izumi, Yuishin
キーワード: Amyotrophic lateral sclerosis
Early diagnosis
Fasciculation
Machine learning
Muscle ultrasonography
発行日: 2022年8月
出版者: Elsevier B.V.
引用: Clinical Neurophysiology. 2022 Aug, vol.140, p.136-144
抄録: "Objective: Although fasciculation on muscle ultrasonography (MUS) is useful in diagnosing amyotrophic lateral sclerosis (ALS), its applicability to early diagnosis remains unclear. We aimed to develop and validate diagnostic models especially beneficial to early-stage ALS via machine learning. Methods: We investigated 100 patients with ALS, including 50 with early-stage ALS within 9 months from onset, and 100 without ALS. Fifteen muscles were bilaterally observed for 10 s each and the presence of fasciculations was recorded. Hierarchical clustering and nominal logistic regression, neural network, or ensemble learning were applied to the training cohort comprising the early-stage ALS to develop MUS-based diagnostic models, and they were tested in the validation cohort comprising the laterstage ALS. Results: Fasciculations on MUS in the brainstem or thoracic region had high specificity but limited sensitivities and predictive profiles for diagnosis of ALS. A machine learning-based model comprising eight muscles in the four body regions had a high sensitivity (recall), specificity, and positive predictive value (precision) for both early- and later-stage ALS patients. Conclusions: We developed and validated MUS-fasciculation-based diagnostic models for early- and later-stage ALS. Significance: Fasciculation detected in relevant muscles on MUS can contribute to the diagnosis of ALS from the early stage."
内容記述: 権利情報:@ 2022 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
URI: http://hdl.handle.net/10564/4366
ISSN: 1388-2457
DOI: https://doi.org/10.1016/j.clinph.2022.06.005
学位授与番号: 24601甲第915号
学位授与年月日: 2024-03-14
学位名: 博士(医学)
学位授与機関: 奈良県立医科大学
出現コレクション:2023年度

このアイテムのファイル:

ファイル 記述 サイズフォーマット
01甲915本文.pdf甲915本文1.08 MBAdobe PDF見る/開く
02甲915本文の要旨.pdf甲915本文の要旨184.36 kBAdobe PDF見る/開く
03甲915審査要旨.pdf甲915審査要旨202.55 kBAdobe PDF見る/開く

このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。

 

Valid XHTML 1.0! Powered by DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - ご意見をお寄せください