DSpace DSpace Softwareについて English
 

GINMU >
01 奈良県立医科大学 >
012 大学院 >
0122 学位請求論文 >
01221 博士論文(医学) >
2023年度 >

このアイテムの引用には次の識別子を使用してください: http://hdl.handle.net/10564/4376

タイトル: Machine learning-based analysis of regional differences in out-of-hospital cardiopulmonary arrest outcomes and resuscitation interventions in Japan
その他のタイトル: 日本における院外心肺停止の予後と蘇生介入の地域差に関する機械学習ベースの分析
著者: Kawai, Yasuyuki
Yamamoto, Koji
Miyazaki, Keita
Asai, Hideki
Fukushima, Hidetada
キーワード: Medical research
Therapeutics
発行日: 2023年9月
出版者: Nature Portfolio
引用: Scientific Reports. 2023 Sep, vol.13, no.1, article no.15884
抄録: Refining out-of-hospital cardiopulmonary arrest (OHCA) resuscitation protocols for local emergency practices is vital. The lack of comprehensive evaluation methods for individualized protocols impedes targeted improvements. Thus, we employed machine learning to assess emergency medical service (EMS) records for examining regional disparities in time reduction strategies. In this retrospective study, we examined Japanese EMS records and neurological outcomes from 2015 to 2020 using nationwide data. We included patients aged ≥ 18 years with cardiogenic OHCA and visualized EMS activity time variations across prefectures. A five-layer neural network generated a neurological outcome predictive model that was trained on 80% of the data and tested on the remaining 20%. We evaluated interventions associated with changes in prognosis by simulating these changes after adjusting for time factors, including EMS contact to hospital arrival and initial defibrillation or drug administration. The study encompassed 460,540 patients, with the model's area under the curve and accuracy being 0.96 and 0.95, respectively. Reducing transport time and defibrillation improved outcomes universally, while combining transport time and drug administration showed varied efficacy. In conclusion, the association of emergency activity time with neurological outcomes varied across Japanese prefectures, suggesting the need to set targets for reducing activity time in localized emergency protocols.
内容記述: 権利情報:© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
URI: http://hdl.handle.net/10564/4376
ISSN: 2045-2322
DOI: https://doi.org/10.1038/s41598-023-43210-x
学位授与番号: 24601甲第925号
学位授与年月日: 2024-03-14
学位名: 博士(医学)
学位授与機関: 奈良県立医科大学
出現コレクション:2023年度

このアイテムのファイル:

ファイル 記述 サイズフォーマット
01甲925本文.pdf甲925本文1.88 MBAdobe PDF見る/開く
02甲925本文の要旨.pdf甲925本文の要旨151.78 kBAdobe PDF見る/開く
03甲925審査要旨.pdf甲925審査要旨214.44 kBAdobe PDF見る/開く

このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。

 

Valid XHTML 1.0! Powered by DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - ご意見をお寄せください